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Abstract

INFIDEL is an abstract machine that operates on grids. It iswrittenin L as an
extension of Basil. It has been designed as atarget for the FIDIL compiler, but it
can be programmed directly in L. The machineimplementsthe abstract types‘ grid’
and ‘domain. Domains represent sets of points with integer coordinates. Grids
are an extension of arrays for finite-difference algorithms. These types correspond
closely to the FIDIL types ‘map’ and ‘domain. INFIDEL serves three purposes.
First, it is proposed as an intermediate step in the compilation of FIDIL programs.
Second, it defines the level at which FIDIL programs and foreign code can be
linked together. Third, part of the interface is not only available for direct use in
application programs, but is also usable in yet-to-be-written system code that will
implement INFIDEL on new architectures.
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Chapter 1

Overview

INFIDEL is an abstract machine that operates on grids. It iswrittenin L as an
extension of Basil. It has been designed as atarget for the FIDIL compiler, but it
can be programmed directly in L[Sem93].

The machine implements the abstract types grid and domain. Domains repre-
sent sets of points with integer coordinates. Grids are an extension of arrays for
finite-difference algorithms. These types correspond closely to the FIDIL types
map and domain.

INFIDEL servesthree purposes. First, it is proposed as an intermediate step in
the compilation of FIDIL programs. Second, it defines the level at which FIDIL
programs and foreign code can be linked together. Third, part of the interface
is not only available for direct use in application programs, but is also usable in
yet-to-be-written system code that will implement INFIDEL on new architectures.

The next two chapters (2 and 3) describe data structures and algorithms for
respectively domains and grids. Chapter 4 is areference manual for INFIDEL.



Chapter 2

Domains

A domain is a set of indices. More precisdly, it is afinite set of »-dimensional
points with integer coordinates. Its intended primary useis to describe index sets
for operations on grids. As such, its representation is optimized for the types
of grids that, in our experience, are most likely to occur in modern agorithms
for partial differential equations. Our goal is twofold: the design aims to obtain
efficient operations not only on domains, but also on grids with those domains,
exposing opportunities for vectorization and parallelization on both regular and
irregular shapes.

According to these principles, we have identified several domain representa-
tions: manhattan, bitmap, thin, thick, tiled, collage. These representations are
supported by INFIDEL. Any of them can represent an arbitrary set of points, but
each is optimized for a set of pointswith specific properties.

Good abstraction dictates that the programmer should not be concerned with
the particular representation used, but always think of a domain just as a set of
indices. We support this up to apoint. Functionsthat operate on domains (union,
intersection, shift, etc.) take domain argumentswith arbitrary representations; they
make a choice of representation for the result, and computeit. This choice is not
always optimal; moreover, it is easy to construct an index set that fares poorly in
any of the available representations. However, we believe that what we provideis
adequate for alarge number of existing modern PDE algorithms.

Here we present briefly each domain representation. A full discussion of their
properties, and of the algorithms used to operate on them, isin section 2.2.



2.1 Domain types

2.1.1 Manhattan domains

The basic index set, the one used by arrays in most conventiona languages, is
an n-dimensional box of points, defined by its lower and upper bounds in each
dimension. Its immediate extension is a union of boxes. A box is a convenient
object for vectorization, and it is easy to partition for paralelization. A union of
boxes maintains these properties. The shape arises frequently—for instance, the
boundary region of abox can be described as aunion of boxes, asshowninfig. 2.1.

Figure 2.1: The boundary of abox as a union of boxes

A manhattan domain isaunion of disjoint boxesin canonical form. Thisform
does not minimizethe number of boxes necessary to describethe domain, but keeps
its number small. The representation is unique for agiven set of indices.

2.1.2 Thin and thick domains

The thin representation is used for irregular, sparse index sets. The thin descriptor
isan ordered list of points. The thick domain is a manhattan with thin holes. The
descriptor is an ordered pair (m, 7), where m is a manhattan descriptor, and = a
thin descriptor, with = C m, and it represents the set difference of m and 7. The
manhattan component m of a thick domain is called its base. Figure 2.2 shows
examples of thin and thick domains.

2.1.3 Bitmap domains

For irregular, medium density situations, the bitmap domain is more appropriate
than the thick or the thin. The bitmap descriptor isaboolean grid (see section 3.1)
with a manhattan domain, called its base. The grid values (true or false) indicate
which of the base points bel ong to the domain. Figure 2.3 shows abitmap domain.
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Figure 2.2: A thin domain and a thick domain

Figure 2.3: A bitmap domain

214 Tiled domains

A tiled descriptor represents concisely certain regular index sets; roughly speaking,
those produced by iterating with non-unit stride over manhattan domains. Such
domains are encoded as the intersection of some infinite, regular tiling of the
n-dimensional space, and a manhattan domain.

Thetiling is obtained by covering the space withidentical, »-dimensional tiles.
Therepresentativetileisaboolean array. Theeementsof atileare called tesserae.
A true-valued tessera, aso called in-tessera, means that the point isin the domain;
afalse-valued tessera (an out-tessera) means the opposite. Thetilesare laid down
so that the lower bound of thefirst tileis at the origin.

A tiled domain descriptor is the ordered pair (b,t), where b is a manhattan
descriptor, called thebase, and ¢ isatile. Fig. 2.4 shows an example.
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tile

Figure 2.4: A tiled domain

2.15 Collagedomains

The set of tiled domain is not closed under the union operation, and cases of
domains that are almost tiled, but not quite, may arise, as shown in Fig. 2.5. To
represent these domains we use the collage descriptor. This descriptor encodes a
domain as the union of tiled domains (b;, ¢; ) with certain properties, among which:
theb,’sare all digoint, and thet,’s have the same side lengths. This representation
captures well union, intersection, and difference of tiled domains, and simplifies
gracefully.

[ o 0 o
[ o 0 o
[ o 0 o

Figure 2.5: Union of two tiled domainsthat is not tiled

2.2 Domain Algorithms

We present efficient algorithmsfor operating on each domain type. The operations
are of two types. set-theoretic (union, intersection, difference) and geometric
(shift, transpose, contract, expand, inject, project). The formal definition of these
operatorsisin appendix B.

In the following sections, we often talk about descriptorsand the sets of points
they represent. For instance, a box descriptors b = (I, u) represents the points
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in box B with lower bound ! and upper bound «. The ¢ operator transforms a
descriptor into a set of points. For instance: pb = (I, v) = B.

221 Manhattan algorithms

Formal definition of manhattan domain

We give the formal definition of canonical form for a manhattan domain.

A box B isthe set of pointsp in Z™ whose coordinates fall between two points
[ and u, called the lower bound and the upper bound of B. More precisely:

1 I u1

Pn Iy Uy,
B={peZ"|l;<p; <u,i=1....n}
We define an ordering relation for pointsin Z™:
p < q iff 37 suchthat p; < g andpr =gz, k=7+1,...,n

Thisisjust lexicographic ordering, if we assume the coordinate with lowest index
to be the the |east significant.

A similar relation for boxes is introduced. If box B has bounds [, «* and
box B? 17, u?, then we have:

B® < BY iff (¥ < [°.

The unit vectors »;, i = 1...n, are vectors with a 1 in the :-th position and 0

e sawhere. For instance:
1

0

<
=
ll

0
A canonical form for a set of points P in Z" is a sequence of boxes C =

(BL,...,B™), ordered by the < relation above, forming a partition of P with
the property of prioritized maximal extension:

Vp,qg € P with p= ¢+ v;
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geBl b= | + [#|  |V]| ¢ |#] :
a7 f i-1 1, Uiy ul

Inthecase: = 1, the above relation is equivaent to:
Vp,q € P with p = ¢+ v; da suchthat p,q € B”.

This property can be intuitively explained with this rule: a box should extend as
much as possible along dimension 7, as long as that does not preclude maximum
extension dong dimensions: <1, ..., 1.

Breaking and coalescing

To reason about boxes as sets of points, we associate a unit box to each point; that
isweassociate pointp = [p1 . . . p,] tothen-dimensional volumein R™ with lower
bound p and upper bound p + [1...1]. We represent a box as the union of the
unit boxes of itspoints. The d-faces of the box are the d-dimensional rectanglesin
R, with d < n, that define its boundary. For instance, when » = 3, thebox isa
parallelepiped, the 2-faces are the faces of the parallel epiped, the 1-faces its edges,
the O-faces its vertices. The n-face isthe box itself.

Most of the manhattan algorithms utilize two procedures: BREAK and CO-
ALESCE. BREAK takes an arbitrary list of boxes and produces a list of boxesin
sufficiently fragmented form representing the same set of points. This form has
the property that the 2 planes defining a box B do not cut any box adjacent to or
overlapping B. In other words, any two boxes B; and B; from alist in sufficiently
fragmented form are in one of three possible situations with respect to each other:

1. they areidentical;
2. they are non-adjacent, that isVp € B;Vq € B;, ||p 4| > 2;

3. they share a d-face, 0 < d < n (the specia case d = n is the same as
situation 1, i.e. they areidentical).

COALESCE takes a list of digoint boxes in sufficiently fragmented form and
returns alist of boxes in canonical forms representing the same set of points. It
proceeds by joining boxes as much as possible a ong dimension O, then joining the
boxes of the result as much as possible long dimension 1, and so on.



Union, intersection, difference

The union of manhattan domains = and y is computed as follows:
compute the union of the boxesin the canonical form of = and y;
compute afragmented form using BREAK;

find pairs of identical boxes;

eliminate one box from each pair, keep unpaired boxes;

au A »w NP

compute the canonical form using COALESCE.
For intersection and symmetric difference, only step 4 changes:

4. (intersection) keep one box from each pair, discard unpaired boxes.

4. (symmetric difference) discard al pairs, keep unpaired boxes.

Thedifference z <y iscomputedaszN(z @y ), where @ isthesymmetric difference
operator.

Transpose, project

The transposition (or projection) of abox B, is also abox B,, whose bounds can
be computed with simple operations on the bounds of B,.. However, performing
these operations on alist of boxesin canonical form does not produce, in general,
a canonical form. The resulting list of boxes is still disjoint, and it suffices to
break and coalesce it to compute the result. These are the steps for evaluating the
transposition (or contraction) of a manhattan domain m:

1. transpose (or contract) each box of m;
2. compute a fragmented form using BREAK;
3. compute the canonical form using COALESCE.

Contract

Contracting requires an extra step, because the contracted boxes may overlap. Be-
tween the BREAK and the COA L ESCE step, redundant boxes must be eliminated,
similarly to the union algorithm.

10



Shift, expand

These are the easiest operations, as shifting or expanding each box in a manhattan
domain preserves the canonical form. No breaking and coalescing is necessary.

I nject

This is the only operation on a manhattan domain that does not produce another
manhattan domain (except in trivial cases). The result of inject(im, .5) is thetiled
domain (b, t), where the baseisgiven by b = expand(m, .5), thetile has sideswith
dimensions 5, and its only in-tesserais the one in the lower |€eft corner.

2.2.2 Tiled and collage algorithms

The tiled representation is somewhat more ad hoc than the manhattan representa-
tion. The canonical form is not unique: there can be many different tiled repre-
sentations of the same domain. However, once the tile size is chosen, the formis
unique. Choosing the most convenient tile size appears to be a hard problem, and
we do it only for some specific cases.

Tiles that produce the same tiling of the space are equivalent. The smallest
tile of an equivalence set is an irreducibletile. All tilesin the equivalence set are
obtained by replicating the irreducible tilein the set along one or more directions.
Thereplication function R takesatilet and areplicationfactor 5 = [s1...s,] and
replicates ¢ s; times along direction :.

A domainbisregularly tiled by atilet with sidelengthse< if

b = expand(contract(b, <), ¢).

In this case the boundary of b follows tile boundaries when the space is tiled by
t, and never cuts any tile. A tiled domain (b, ) isregular if its base b is regularly
tiled by ¢.

A collage domain ¢ is encoded as a set of regular tiled domains with digjoint
bases, caled the components of ¢:

pe=|J olbi,t;)

(b ti)Ec

where b; is a manhattan domain, ¢; atile with side lengths ¢;, and the following
additional properties hold:

11



1. ¢; =¢; forall valid s, j (al tiles have the same dimensions);
2. Vi,jsuchthat: # j,t; # t; (thetilesareall different);

3. there is no replication factor 5 (except for the trivia replication factor
[1...1]) such that t; = R(u;,S) for dl ¢, with adequate u; (the tiles are
mutually irreducible).

4. t; must have at least onein-tesserafor al i (there are no empty components).

5. t; may not bethe unit tile (if it were, the collage would have been promoted
to a manhattan).

This representation allows the run-time system to reconstruct manhattan domains
from unions of tiled domainsin certain cases. More specifically, if the result of an
operation on collage domains has a single component with afull tile, a manhattan
descriptor is returned.

In some cases a collage domain with more than one component could be
represented more concisely by a manhattan descriptor, but the system does not
recoghizeit. Figure 2.6 isan example.

Figure 2.6: A collage domain that should be a manhattan

In general, there is no guarantee that a “minimal tile’! is always used. Set
operations on domains with differently-sized tiles may yield aresult with alarger
tilesize. Thishas anegative impact not so much on the cost of domain operations,
as much on the efficiency of vectorizing operations on grids with such domains.
We expect this not to be a problem in practice, because of the relatively regular
patterns of expansion and contraction found in most algorithms.

This isjust an intuitive notion. A tiled domain can always be encoded by a unitary tile and a
manhattan base with lots of small boxes.

12



Kernel descriptors

It is easier to perform certain operations on an aternative representation for a col-
lage domain, the kernel descriptor. This representation is similar to the collage
descriptor but has different properties. A kernel descriptor isaset of tiled descrip-
tors with regularly-tiled bases and exactly one in-tessera in each tile. The bases
may overlap, and thetilesare all different but have all the same size.

The implementation of certain operations produces sets of tiled descriptors
with irregularly-tiled bases as intermediate results. When these sets satisfy all
other properties of a collage or a kernel descriptor, they are called, respectively,
guasi-collage and quasi-kernel.

Union

We show only the union agorithm; intersection and symmetric difference share
the same genera structure and differ only in obvious details.

We first consider the case of two collage domains with the same tile size.
Similarly to the manhattan situation, the union algorithm for domain descriptors x
and y proceeds by mutually decomposing the bases of both operands. Every tiled
component (b7,¢7) of « is partitioned into a set of tiled components {(47:,¢7)}:

[ 130 %

ot 17) = U ot85. 1)

with the following property: given (4, j), either b7, N by, = 0 for al k, or b%; C b
for some k. All of this holds when exchanging = and y. The result is that every
decomposed base of « iseither identical to adecomposed base of ¥, or digjoint from
all of them—andviceversa. Theprocedure DECOM POSE isusedto computethese
subdivisions. After subdividing, the union is performed component by component
on the decomposed domains. Then components with identical tiles are merged,
and property 3 and 5 are imposed in order. Property 4 is preserved by the union
algorithm, but must beimposed in the intersection and symmetric difference, since
the agorihm may create empty components that must be removed. The following
procedure takes domains z and y and computestheresult = U y in dy:

1. setd, — DECOMPOSE(X,y), d, — DECOMPOSE(y, x);
2. setd —d,ud,.
3. setd, — O;

13



4. repest until d isempty:

(8) takeatiled component (b,¢) out of d;

(b) if thereisanother tiled component (b, ') (samebase, differenttile)ind,
takethat out aswell and set « to the descriptor of the union of (b, ¢) and
(b,t"). Thisisequal to (b, t A "), where the A operator isthelogical-or
of the operands’ tesserae.

(¢) if thereisno other tiled component with the same base in d, set v —
(b,1);
(d) setd, «— d, Uu;

5. replace all components of d,, with the same tile with a single component,
taking the union of their bases;

6. if dl thetiles can be simplified using the same replication factor, do so;

7. if d,, has a single component with a unitary tile, convert it to a manhattan
descriptor.

When thetiles of = and y do not have the same size, we construct two descriptors,
2’ and ¢/, that encode the sameindex setsas « and y respectively, and have equally-
sized tiles. Thisis done by computing the least common multiple (LCM) of the
two side lengths (one from =z, one from y) in each direction. The vector thus
produced is caled the LCM-size. Each tile t¥ of z and ¢! of y is replicated by
an adequate factor to produce atile whose size isthe LCM-size. Since thesetiles
produce the sametiling of the space, it is not necessary to change the bases. The
descriptors 2’ and ' are quasi-collage; the algorithm proceeds as given, but at the
end aregularization step is necessary, as described in the next section.

Regularization

Given a quasi-collage descriptor ¢/, this procedure computes a collage descriptor ¢
representing the same set of points:

1. compute a quasi-kernel descriptor £’ from ¢’. To do so, break every com-

ponent of ¢/ with NV in-tesserae into N' components with 1 in-tessera, and
merge components with identical tiles.

14



2. Compute a kernel descriptor £ from &’ by regularizing the bases. Given an
irregular tiled component (bi, ¢), with atile size vector ¢, and coordinate
vector o for thesinglein-tesseraof ¢, the basefor an equivalent regularly-tiled
descriptor is given by

breq = expand(project(shift(bi, <o), ¢), ).

3. Computec from k by transforming the componentsof % into collage descrip-
tors, and taking their union.

Shift

A collage domain is shifted by shifting each component, and then regularizing the
result. To shift acomponent by a shift amount .5, the base is shifted by .5, and the
tileisrotated by 5. Rotating atileis equivalent to shifting it with wrap-around, as
if the tilewas closed onto itself in an n-dimensional toroidal shape.

Transpose, expand, inject

Transposition (expansion) of a collage domain is done component-wise, by trans-
posing (expanding) the base and the tile of each component. Injection is achieved
by expanding the base and injecting thetile of each component. It iseasy to verify
that the collage properties are preserved by these transformations. No regulariza-
tion is needed.

Contract, project

Because division is aways harder than multiplication, contraction (projection)
reguires one extra step. If the contraction (projection) factor in each directionisa
multiple of the tile size in that direction, then it is sufficient to contract (project)
each tile and each base. If not, the tile must first be replicated until its sizeis a
multiple of the contraction factor. Then the domain must be regularized; theneach
base and each tileis contracted (projected).

2.2.3 Bitmap algorithms

Bitmap domains are represented as logical grids with manhattan domains. Op-
erations on bitmap domains have corresponding operations on grids. With no

15



exception, the agorithms are quite easy to derive and express in terms of the
INFIDEL grid primitives, and we don’t discuss them here.

Operations on bitmap domains aways produce bitmap domains. The INFI-
DEL function simplify-bitmap-domain returns a manhattan descriptor when
its argument is a completely full bitmap domain (al the elements of the grid are
true), and the null domain descriptor when its argument is a completely empty
bitmap. Thisoperation issomewhat expensive, soitisnot done automatically after
each bitmap operation that might take advantage of it.

224 Thin algorithms

A thin domain descriptor isalist of pointsin lexicographic order. The agorithms
for operating on these descriptors are a so quite obvious. The sorted list represen-
tation makes the set operations (union, intersection, difference) much faster than
if a manhattan descriptor had been used, because adjacent points in a manhattan
descriptor are merged into a single box.

When one operand of certain set operation is thin, and the other is not, it
may be hard to determine the best representation for the result. The system uses
parameterizable heuristics to decide if, for instance, the union of a thin and a
manhattan should produce a thin or a manhattan descriptor. In certain cases, it is
clear what the result should be: for instance, the difference of a manhattan and a
thin produces athick descriptor if they are not disjoint, and a manhattan otherwise.

225 Thick algorithms

A thick descriptor & isthe pair (m, T), where m isamanhattan descriptor and 7 a
thin descriptor, with 7 C m. The set of points described by % is p(m < 7). Set
operations on thick descriptors are easily described (and implemented) in terms of
operations on manhattan and thin descriptors, using set algebra. For instance, if
ky = (mg, ;) and k, = (m,, 7,), then we have:

ke Uk, = (myet)U(my<1y)
= (mpUmy, (T, ©s5y) U (Ty ©5,) U (T, N Ty)).

Geometric operations are also straightforward.

16



2.3 INFIDEL Domain Interface

23.1 Thedomain type

The type of a domain expression in INFIDEL is (domain n), where n is its
dimensionality. After transformation, variablesof thistypeacquiretypet. Domain
objects are garbage-collected and never need to be explicitly freed, athoughiit is
possibleto freethem passingthemtofree-gc. Most domain descriptorsare small,
with one exception: bitmap domains can occupy as much space as the grids they
describe, and it may be desirable to free them explicitly.

Type-predicate operators alow determining what descriptor is used to encode
a given domain. The structure names for domain descriptors are manhattan,
collaged, thind, thickd, bitmapd. INFIDEL also definesthetiled structure,
which is only used as a subcomponent of a collage domain. The type predicate
is obtained by prepending -p to the structure name (manhattan-p, collaged-p,
etc).

2.3.2 Domain constructors

INFIDEL has three operators to construct domains. The operator domcons takes
these arguments: [ and « (the lower and upper bounds), and d (the dimensionality).
It returns a manhattan descriptor consisting of asingle box with the given bounds.
The bounds !/ and « are passed as pointers to integers, and should point to integer
arrays with length d.

The second operator, domcons-t, takes these arguments: p (the pointsin the
domain), n (the number of points), and d (the dimensionality). It returns a thin
descriptor with the given points, which are copied. The point array p is passed as
apointer to integer, which should point to an integer array of length nd.

The third operator, to-domain, takes a boolean grid and returns a bitmap
domain. A copy of the grid is made for the descriptor (using the copy-on-demand
mechanism described in section 3.2), so the grid can be safely freed.

Thesearetheonly constructors. The other typesof descriptorsare produced au-
tomatically as needed. Explicit conversion routines (to-bitmap, to-manhattan,
to-thin) areavailable, butitishoped that they will not be needed at the application
level.
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Chapter 3

Grids

3.1 Oveview

Grids are n-dimensional arrays with arbitrary index sets. The INFIDEL virtua
machine offers various types of operations on grids. We divide them in two main
classes. Elementwise operations are those that accessindividua elements of one or
more gridsin a data-paralle fashion. Remapping operations are those that change
the association between indices and elementsin agrid. In INFIDEL, elementwise
operations are eager, and remapping operations are lazy. An instance of a lazy
operations can be made eager by adding an elementwise copy. The reason for the
lazy semanticsis precisely the avoidance of the extra copy.

In theory, grids could be used to represent a variety of data structures: sets,
lists, vectors, matrices. In practice, grid operations are designed to work optimally
for large grids with scalar elements, and index sets of the types described in
section 2. These are the situations in which the target applications spend most
of their execution time and memory resources. When conventional programming
techniques are used in these situations, full exploitation of the features of the host
computer may require considerable effort. The grid interface reduces this effort.

Theinterface is at a conveniently high level for the algorithm designer, and is
meant to hide most architectural characteristics of the target computer. Although
the design of theinterface has taken into account future multiprocessor implemen-
tations, the only currently available implementation (the one we describe here) is
for a uniprocessor with vector units. We consider this not only a useful tool by
itself, for use on vector machines such as Cray computers, but a so abuilding block
for future parallel implementations.
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As hinted, the interface is not compl etely machine-independent. However, the
machine-dependent parts are not meant to provide a different functionality, and
are included because they represent opportunities for optimization. It is up to the
compiler writer, or the L programmer, to take advantage of them.

The INFIDEL run-time library performs several dynamic optimizations, in-
cluding choice of optimal vectorizing directionin multidimensional grids, delayed
alocation and early release of grid memory. Most of these optimizations are
automatic: some require that certain high-level hints be passed to grid operations.

3.2 Chunks

The run-time system maintains three components for each grid: domain, data
descriptor, and data. The dataisdivided in chunks. In the uniprocessor implemen-
tation, this division alows severa dynamic memory optimizations. Chunks have
amaximum size, to reduce heap fragmentation. They are reference-counted, and
they can be shared among grids. The sharing is transparent. A copy-on-demand
mechanism guarantees correct update semantics for shared chunks. Chunks are
alsoalocated ondemand: grid-alloc returnsagridwithout allocatingitschunks.
The first time an element of a chunk is set, that chunk is allocated. Correspond-
ingly, an early-release mechanismisprovided. The mechanism deallocates chunks
immediately after their last use in an elementwise operation.

Chunkification affects almost every aspect of the interface design and system
implementation; therefore we postpone a full discussion of its properties to the
sections describing individual operations.

3.3 Thegridtype

Grid expressionshavetype (grid n e), wheren isthedimensionality of thegrid,
and ¢ is the element type. Just like domains, grids are L boxed structures, and
they are stored in locations of type t. Grids, therefore, can and will be garbage-
collected. However, the garbage collection agorithm cannot guarantee that grids
that are no longer used will betimely freed (or even freed at all). Especially when
grids are large, free-gc should be used to reclaim the space as soon as possible.
Optionally, agrid may be freed during its last use, as described in section 3.5.
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3.4 Grid allocation

The argumentsto the INFIDEL operator grid-alloc are: domain, element type,
and optional hints. The return value is a grid with the given domain and element
type.

The hints are passed in a structure of type grid-alloc-hints that provides
various information about the grid, among which how the grid’s data should be
partitioned. Partitioning hintsmay begiven at different levelsof abstraction: froma
compl ete specification of the partitioning, to hintsabout the preferred vectorization
direction. When no partitioning hint isgiven, the system choosesan initial partition
automatically, based on the grid’s domain and €lement type.

A grid’s chunks are allocated lazily. A chunk isallocated when one or more of
itselementsare set for thefirst time. Attemptingto use avauefrom an unallocated
chunk resultsin arun-time error.

Oncedl chunksof agrid are alocated, their tota sizeis at least aslarge asthe
number of elementsin the grid multiplied by the element size. It can be larger in
the following cases:

¢ when the grid has a thick or bitmap domain D, the layout of the datain the
chunksisthe sameasfor agrid whose domainisthebase of D (itsmanhattan
component). Thislayout strategy sacrifices space to regularity. The storage
locations corresponding to a false value in the boolean grid of the bitmap
domain, or the thin holes of the thick domain, are not normally accessible.

e A value > 0 may be passed in the allowable-memory-overhead field
of the optimization hints. Thishintinformsthe systemthat it isacceptableto
alocate 1 times more space than strictly necessary for a manhattan domain,
if doing so helpsin avoiding bad strides along one or more dimensions.

3.5 Elementwise operations

INFIDEL offers essentially a single data-parallel elementwise operation, namely
map-grid. The arguments to map-grid are: an operator f, adomain D called
the restriction domain, and one or more grids G1,...,G,. The domain D is
intersected with the domain of each grid (&; to obtain the computation domain D’,
that is D' = D N (N é(G;)), where 6(G') denotes the domain of grid G. The
operator f takes g arguments. f should have no side effects other than storing
values into its arguments. Map-grid applies f to G1[p], ..., G,[p] a each point
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p € D', inpardld. The square brackets denote the indexing operation: G[p] isthe
location at which element p of grid G is stored. When used in a value context, the
same notation standsfor the value itself. Examples:

(map-grid D setf :grids (A B))
stores elements of grid B into grid A, restricted to domain D.

(map-grid D
(slambda (x y z) (setf x (+ y z)))
:grids (A B C))

computesthe elementwise sum of B and C and storestheresultin A, again restricted
to domainD.

A variation of map-grid ismap-grid*, which takes the extra argument p. A
variable named p is bound to each index during execution, and it may be used in
the operator body (which should be an s1ambda).

351 Argumentstoelementwise operations

Thegrid argumentstomap-grid must either bevariables, or constant-factor remap-
ping expressions of variables. Example:

(map-grid D
(slambda (x y z) (setf x (+ y x)))
:grids ((4)
((grid-shift B [0 1]1))
((grid-shift B [0 -11))))

Themain reason for alowing remapping expressionsas argumentsisthat it exposes
opportunitiesfor an important vector optimizations: improved vector-register allo-
cation through strip-mining. Thisoptimization requires knowing, at compiletime,
that two of the arguments are remappings of the same grid (B in the example); and
it aso requires knowing the remapping parameters (in this case, the shift amount).

Ingeneral, instead of using remapping expressionsinmap-grid, onecanobtain
the same effect by storing the (lazily) remapped gridsin temporary variables.

21



3.5.2 Optimization directivesin elementwise operations

Additional information can be passed to map-grid for the purpose of optimization.
The information can be specific to a grid argument, or to the restriction domain.
Each item of information is called, respectively, grid directive or domain directive.
Grid directives are passed as keyword arguments associated with grid parameters.
Domain directives are passed as additional keyword arguments to map-grid.

Here we present the directives and explain their meaning. In section 3.7 we
discussin more detail the way in which they operate.

The :free grid directive

Grids are large objects, and memory is one of the critical resources in the target
applications The : free directive, when applied to grid ¢, informsmap-grid that
thisisthe last use of ' and the early-release mechanism should be applied to its
chunks. For instance, if thiswere thelast use of B and C, one might write:

(let ((((grid 2 float) A) (grid-alloc D float)))
(map-grid D (slambda (x y z) (setf x (+ y 2)))
:grids ((A) (B :free t) (C :free t)))

Using the : free directive causes each chunk to be freed immediately after itslast
use. Since chunksare aso alocated on demand, the total amount of memory used
in the above example is likely to exceed the amount of memory used by B and C
only by afew chunks, and by just a single chunk in an optimal situation.

The :partition grid directive

In certain cases, through compile-time analysisin the front end, or knowledge of
the agorithm, the data descriptor of agrid (also caled partition descriptor can be
computed at compile time. When the data descriptor of al grids in amap-grid
operation is a constant, it can be passed to map-grid viathe :partition grid
directive. If therestriction domainisaso aconstant, several simplificationscan be
performed. The resulting code has |ess run-time overhead and is more suitable for
small grids.
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The :mask domain directive

Thisdirective affects only the size of the generated code, with no significant impact
on its speed. It indicates that the computation domain could be a bitmap or thick
domain, anditsdefault valueisconservatively t. Inthedefault case thecompilation
of map-grid produces two versions of the statement(s) that operate on individual
grid eements. one for the bitmap and thick domains, and one for al others. When
the :mask directiveisnil, the bitmap/thick version is not produced.

3.5.3 Unsafety in elementwise operations

Elementwise operations have unsafe semantics. When the computation domain
D is of type thick or bitmap, the effective computation domain D. is the entire
base of the thick or bitmap domain; that is, its manhattan component. This means
that f isapplied to grid elements over D, instead of D. This choice alows good
vectorization at the expense of operating on more elements than strictly needed.
The operator f is modified to prevent side effects for those pointsin D, < D.
However, some architectures makeit impossible, or difficult at any rate, to prevent
al side effects. In particular, on several members of the Cray family it is not
possible to selectively disable execution of arithmetic operations that may cause
floating point exceptions.

We consider the issue in more detail. On the Cray X-MP and Y-MP the effect
of storing avector element can be conditionally nullified by using the Conditional
Vector Merge instruction. Given a boolean grid b with domain D, such that
b[p] = p € D, then the assignment

z[p] < €
(where £ is some side-effect-free expression) is rewritten as
z[p] < if b[p] then & else z[p].

This dmost obtains the desired result. Unfortunately, the execution of &£ can
produce floating point exceptions on points in D, < . Such exceptions are
completely meaningless and should be ignored. Most processor architectures
(including the Cray) do not alow taking the exception conditionally. Also, the
Cray does not support |IEEE Floating Point-style exceptiona vaues, therefore
turning off exceptionsis generally not desirable, as errors can go undetected.

A possible way to avoid unwanted exceptions is to conditionally replace the
operands of every floating-point operation with “safe” values. This may be too
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expensiveif intermediate results need to bereplaced aswell. The expression £ can
be analyzed to determine safe input values, that would guarantee al intermediate
resultsto be safe. Even so, the cost of the conditional replacement may be too high
and we have not implemented this solution.

The INFIDEL programmer must deal with these situations directly. As a
palliative, theINFIDEL set-hidden-elements operator takesagrid and avalue,
and it stores that value in al “unreachable’ elements of the grid: those whose
indices are in D. < D. The programmer should choose a “safe” value for those
points, that is, one that will not produce exceptions in subsequent elementwise
operations. The programmer’s understanding of the algorithm enables her to use
set-hidden-elements sparingly.

3.6 Remapping Operations

The remapping operations change the associ ation between indices and el ements of
a grid, and possibly add or remove elements. They are: shift, transpose, inject,
project, restrict (the FIDIL on operator), and merge (the FIDIL disjoint union
operator). They dl have lazy semantics. The result of these operations does not
require allocation of additional data memory, but only atypically small amount of
descriptor memory. Thisis achieved by sharing the chunks of the result with the
chunksof the operand (or operands). The operations however return aconceptually
new object, not just a different view of the same object.

The lazy semantics do not always optimize the resulting program in terms of
speed and memory usage. The alternative is to use eager versions of the same
routines, which are obtained by combining the lazy versions with an elementwise
copy on a newly alocated grid. The optima choice between eager and lazy
semantics in a specific situation depends on many factors, among which: the
parameters of the operation, the target architecture, and the subsequent reference
pattern of the gridsinvolved.

A lazy remapping of a sufficiently large grid is cheap, when compared to the
eager version, as no datais copied. The remapping affects the cost of operations
that access the remapped grid’'s elements (that is, map-grid). For the vector pro-
cessor implementation, using alazily-remapped grid in an elementwise operation
corresponds to a simple index translation that in most cases does not affect the
vectorization efficiency. In these cases the access overhead isamost nil.

The availability of lazy remapping semantics is useful even on a distributed-
memory multiprocessor (DMMP); for instance, when two or more remappings are
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applied to a grid before any of the elements are used. On a DMMP, however,
accessing a lazily-remapped grid may involve moving data across the intercon-
nection network, and is much more expensive. To avoid duplications of transfers,
the semantics should be those of latched evaluation [Sku90]. In this scheme,
when alazily-remapped gridis used for thefirst time, new chunks are permanently
alocated for it; and further references to that grid use the new chunks.

3.7 Grid Algorithms

In this section we present the algorithms used in the vector processor implementa-
tion of elementwise and remapping operations.

A grid GG isatriplet (d, P,C'), where d is the domain descriptor, P the data
descriptor, and C' the chunk vector. The domain descriptor encodes the domain of
the grid as one of the objects presented in section 2. The data descriptor specifies
how points in the domain map into locations in the chunks. The chunk vector is
an array of chunks. A chunk is a one-dimensiona array where G’s elements are
stored. Fig. 3.1 gives avisual representation of .

|
domain
‘ data
L —= descriptor
il O
.\ d/
\> 777777777
-

Figure 3.1: A grid.
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3.7.1 Section descriptors

Givenagrid G = (d, P, C), thegrid element G:[p], withp € d, isstoredin Cc][]],
where ¢ = ¢(p, P)and I = I(p, P). We cal ¢ the chunk index and I the linear
index. This section explains how ¢ and I are computed from p and P.

Thedatadescriptor P of (¢ isaset of section descriptors. Each of theseencodes
thelayout of asubset of (G’s elementsthat can be accessed in aregular and efficient
way. There are two types of section descriptors. One, the thin section descriptor,
is used when the domain descriptor d isthin; the other, thetiled section descriptor,
in all other cases. We discussthetiled descriptor first.

A tiled section descriptor S isthetuple(bs,es, 05, s, 25, ¢5) Where:

¢ bg isabox descriptor;

e c5 (aninjection factor) and o5 (a shift factor) are integer vectors of length
n,

¢ cs (the chunkindex) is an integer;
¢ 25 (thezeroindex) isaso aninteger;

e ¢g (thestride vector) isan integer n-vector.

The box, injection factor, and shift factor represent the section domain ¢, by the
following relation:
(55 = inject(pbs,és) <L og
(recdl that < isthe shift operator). Thisis equivalent to a tiled domain with a
singlein-tessera, or a kernel domain with a single component.
The chunk index, zero index, and stride vector encode the mapping between

an index and a position in achunk. For p € ég, the following formula defines the
relation between p, ¢, and I

Glp] = Clesllzs + ps - ¢s] (3.1)

with -
ps = 225 3.2)

£s

and z - y isthe inner product of = and y. We call ps the section index. Using ps
instead of p in 3.1 may seem confusing, but is essentia to guarantee the correct
functioning of lazy remappings.
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A thin section descriptor consists of a thin domain descriptor 7, a point range
p = (i1,1,),achunk index ¢ and alinear index z. The point range specifies which
points of 7 are included in the section, by giving the indices of the first and last
pointin 7’slist of points. Thelocation of thefirst element of the sectionis C'[¢][z].
Following points map into subsequent elements.

3.7.2 Non-thin elementwise operations

We describe the implementation of an elementwise operation with domain D on
grids Gy, . .., Gy, with D C 6(G5)), for the cases in which the descriptor of D is
not thin.

Since D may be fairly irregular, and the grids are partitioned, one important
issue is computing efficiently the locations of the grids’ elements. We do this by
decomposing the operation into many elementwise operations on disjoint subdo-
mainswhose unionis . For each of these subdomainsthelinear index generation
isregular and allows vectorization.

A computation partition P isaset of digioint section domains 6¢', such that
U, 6¢ = D, and given agrid G, there exist ak such that 6¢ C 6(Sy"); that is,
each computation section domain is a subset of some section domain of each grid.

Every computation section domain ¢ is described by the familiar tuple
(bc, oo, 80), with:

(50 = inject(pbc,éc) L og.

The indices of the section are obtained by
p=pcec+oc, po€be.

The section index ps is obtained from equation 3.2:

pesc + 0¢ =05
s = .
£s

Thelinear index I thenis given by:

Oc =058

£
I=z5+4+ b5+ po - = ps.
£s

which we can rewrite as
I=zc5+pc-dcs

withzgg = 29 + % -pg and pos = Z_§¢S- Showing that theinteger divisions
in thelast two formulas are exact isleft as an act of faith to the reader.
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This showsthat in order to compute the linear index from p¢ it is sufficient to
use z¢s instead of zg, and ¢¢g instead of ¢s. Thisis convenient because p¢ is
determined only by the computation section domain and not (directly) by any of
the grids involved.

Let f be the operator of the elementwise operation. The steps for executing
the operation are:

1. obtain P¢ by splitting D and al the 6(S5);
2. foreach 6 € P“ do thefollowing:

(8 find the section S of each grid such that ¢ C 6(5); we do thiswith a
linear search through the grid’s partition descriptor;

(b) computethe zero index z¢ s and the stride vector ¢ s for each grid;
(c) generate dl indices pc € bc and evaluate f on the chunk elements
indexed by z¢cs + pe - dcs.

This description omits the memory management actionsthat rel ease dying chunks
after their last use. The scheme assigns a reference count to each chunk. In the
preambl e of an el ementwise operation, the countsof dying chunks (thosebelonging
to grids that are dead after the operation) are increased to reflect the number of
times each chunk will be referenced during the operation. Then the grid is freed;
but those chunks that have further uses remain alocated. After operating on
each computation section, the count of each dying chunk used in that section is
decremented, and the chunk is freed when the count reaches zero.

3.7.3 Theuniversal transducer

The universal transducer T is a function that encodes arbitrary sequences of
applications of inject, project, shift, and transpose, on either domains or grids. We
use the universal transducer in the implementation of themap-grid operator, and
in the evaluation and simplification of remapping expressions.

The first argument to 7" is a domain, or a grid; the second argument is a
transducer factor, thetuple (o, &, ¢, o', w). We define

T(z,7) = transpose(inject(project(z < 0, k),¢) < o', w)

with 7 = (o,k,¢,0',w). We overload T to operate on points as well, with the
following definition:

+ 0

T(p.7)= (pH €-|-U')®w
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where @ is the permutation operator, thus defined: (z ® y)[:] = z[y[]]. The
elements of y arerestricted to beapermutationof [1, 2, .. ., n]. Every permutation
factor y has an inverse, y~1, defined by:

(royoyt=@eyHey=qa forala.

Also notethat @ isassociative: (z @ y) @ z =2 ® (y @ 2).
With this definition of 7'(p, 7), given agrid (&, the following identity occurs:

Glpl = T(G, 7)[T(p,7)] (3.3

when p € domainOf(G') and (p <o) mod x = 0. The latter condition on p is
necessary because the project-by-« operation causes elements of & to be lost in
the remapping: precisely those whoseindex p issuch that (p <o) mod x # 0.

The usefulness of T' comes from the fact that given two transducer factors 71
and 7, it is possible to compute afactor m; = 7 o 71 that combines their effect:
that is,

T(T(X, Tl), Tz) = T(X, T21) foral X.

For thisto be truein al cases, the null factor =5 must be introduced. This factor
does not have a corresponding tuple, but is defined by the following identity:

T(X, o) = null grid or null domain, for all X.
Here is an example of aremapping sequence that produces a null grid:
contract(expand( contract(G, 2),2) < 1, 2).

The rest of this section shows transducer factors corresponding to remapping
operations, how transducer factors are composed, and how to put a transducer
factor in normal form.

Transducersfor domain operators

Let1=11,...,1,0=0,...,0],wig = [1,2,...,n]. Thefollowing equivalences
exists:

shift(X,5) = T(X,(5,11,0 wiq))
project( X, S) = T(X,(0,5,10,wiq))
inject( X, .5) T(X,(0,1,5,0,wiqg))
transpose( X, S) = T(X,(0,1,1,0,5))
The transducer for the shift operator can also be defined by
shift( X, 5) = T(X,(0,1,1, 5, wiq))-

29



Composition of transducer factors

We show how to compute a transducer factor »; such that
T(X,7m1)=T(T(X,11),2).

The composition of 71 and 7 isencoded by the following equations:

(p: 0151 + 0'1) W w1+ o2
T(T(pv Tl), 7—2) = 1 - £2 + 0'/2 (0% w2 (34)
with therestrictions
(p + Ul) mods; = O (35)
K(p +o1) % T 0’1) © wr + az] mods, = O (3.6)

Equation 3.5 defines which grid elements “survive” the contraction by x4, and 3.6
the contraction by «». We define:

- -1
02 = 02 YWy

- -1
K2 = K2 ® wq

A -1
€2 = 2 QW

~Ar ot -1
0y = 0y D wq ™.

We can then rewrite 3.6 as:
@+al)%+ag+&2 mod 4, = 0
or equivaently:
[e1p + €101 + (0] + G2)K1] mod k1ip = 0. (3.7)

To derive a single transducer factor whose effect combines those of 7, and 7, we
must solve equations 3.5 and 3.7 simultaneously. If the system has no solutions,
then 1 = 7, the null factor. Otherwise, the solutions satisfy the equation

(p+a)mods =0
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where o and 5 can be computed from the coefficients of the system, as shown in
appendix A. Thisis the same conditionimposed by a shift by « and a contraction
by 3. Therefore we have:

™ = (@, B, €21, 051, w21).

We now show how to compute e, 054, and woq. We can rewrite equation 3.4 as:

€1€ NG "
T(p,m21) = |(p+ 01)—= + (0} + 52) 2 + 65| Qw1 @ wy. (39
K1Kk2 K2
For convenience, we define:
= O'l
8152
= Kiko

NG .
= (0} +62)=2 + 5%
K2

€ U x| o 9

= w1 ® wo.

Thevalueof o’ isnot necessarily integer. Inanimplementationitismoreconvenient
to compute ko’
ko' = (Ull + 52)52.‘{1 + (}/2,'{1/%2.
We now equate the right hand side of 3.8 (using the new definitions) and the
definition of T'(p, 21):
o _ — +
(ptgé + 5’) ®w= (p Cen + 0/21) © wa1.

K s
Thismust hold for all p. We now have enough conditionsto determine the missing
values, which are given by:

Be
K
P ﬁé?—l— ﬁl?(;’ S RENQ
g = —
21 I{ﬁ
Wy = w.

31



Normal form

If two transducer factors 71 and m» are such that 7'(z, 1) = T'(z, ) for dl z,
we say that -, and , are equivalent and we denote it by 7 = 7. It iseasy to
see that any factor has an infinite number of equivalent factors, because of the
degree of freedom induced by the two independent shift factors, o and o/. We
define the normal form of atransducer factor = the factor 7,, such that 7,, = = and
0 < o/, < ¢,. Such form aways exists and is unique, and can be computed as
follows:

o, = o+rlo'/e]
Kpn = K

En = €

ol = o'mode

The proof is omitted.

3.7.4 Remapping operations

To obtain some remapping of agrid G' = (D, P, ('), we compute separately the
domain and the section descriptors of the result (. As mentioned, the chunks of
G are shared with (7. The new domain is computed using domain operations; here
we show how to compute the new section descriptors.

Remapping by transducer

First we consider the case in which the remapping can be encoded by atransducer
factor 7. Thisincludes the operations of project, inject, shift, and transpose. To
obtain a new section descriptor, we start by deriving the new section domain bs
fromtheold one, s = inject(bs,cs) < og. We could construct atiled descriptor
to represent ¢, and then use domain operators to transduce it; but it is possibleto
compute the result with arithmetic operations only. First notice that

6s = T(bs,7s) with 75 =(0,1¢5,05,wid)
and therefore
bs = T(és,7) = T(bs,7) where 7 =r1o0r7s.
We want the result to be in the same form: 65 = inject(bs, £s) + 6. Recall that

g = T(bs.7) = transpose(inject(project(bs < &,7%),&) < &, &).
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Shifting and projecting a box produces another box (possibly the null box). By
shuffling around the transpose operation, we can then write:

bs = project(transpose(bs < &,5),% © &)
és = Q&
65 = o Q&.

If 7 isinnormal form,then 0 < 65 < £5, asrequired to properly represent atiled
section domain. To compute

' = project(b, k)
whereb = (1,u),b" = (I, v'), we use thefollowing relations:

U'="Tl/k], o =|u/k].
If I > u} for any dimension, theresultisthenull box. Inthiscase, the transduced
section isnull and it is not included in . Those chunks of (if any) that are not
used by any section of (7, are not included in the chunk vector ¢'. The chunk index
¢s iscomputed from ¢g taking into account deleted chunks.
As the last step, we compute the zero index Zs and the stride vector bs.
Combining equations 3.1 and 3.2 we have:

Glp] = Cles]lzs + 2205

os] (3.9
and from equation 3.3:

R - T Go
Gl = (G, T () = GIT( )] = CleslEs + -2 2275541, 3.0
Expanding 7'(p, 7) and equating the right hand sides of 3.9 and 3.10, we obtain:
ds = (i ® w) £s(ds @ w) (3.11)

£es

(%54—0’)(&#@&5 R
Zs = Zs <= .

5. (3.12)

€s
(Equation 3.11 is obtained by taking the limit for p — oo; equation 3.12 by setting
p = o0g.) By noting that & = w, we can write equivalent but more convenient
expressions. Itisparticularly useful torewrite 3.12 since someof itssubexpressions
do not necessarily have integer values:

¢s = (%(bs)@w

! ~1
P ZS@(US‘|‘U)€+(U &6k

®w-</35-

€K
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Remapping by restrict/merge

The restrict and merge operations do not change the association of indices and
elements, but only add or remove eements. In the case of ¢ = merge(G.,, G,),
the partition descriptor of ¢ is the union of the section descriptors of G, and a
simple modification of the section descriptors of &/, obtained by replacing the
chunk index c¢g withcs + N,,, where NV, isthe number of chunksin .. Thechunk
vector of the result, C, isthe concatenation of €', and Cy.

For (7 = restrict((+, Dg), the partition of (7 is obtained by intersecting each
sectiondomainwith Dg. If theresultisthenull domain, that sectionisnotincluded
in theresult. The zero index and stride vector do not change. If some chunks of
are not used by any section of (7, they are not included in ¢'. The chunk index in
the section descriptorsis updated accordingly.

3.7.5 Reduction

To generate grid reduction code in the vector processor implementation, we add
the remapping operator grid-stretch to the machinery we have developed for
elementwise operations. Thisoperator isan extensionof grid-transpose, andits
useisrestricted to the constant-factor remapping expressionsinmap-grid. Unlike
the other remapping operators, grid-stretch does not return a new grid object,
but adifferent view of itsgrid argument. The elements of the result are shared with
those of the argument, and assigning into one of them affects both objects.

The definition of stretch is similar to that of transpose:
stretch(G, 9)[p @ S] = G[p]. (3.13)

Thedimensionality of stretch((, 5'), ns, isthelength of .5, and it isindependent of
n, thedimensionality of . Theelementsof S' = [so, .. ., s, ,—1] areeither integers
between 0 and » <1 included, or the undefined index, denoted by a diamond ().
(In the implementation we use the value <1 to signify a diamond). The integer
elements of S are all different, that is: # j < (s; # s; V s; # ©). Themeaning
of @ changes dightly:

(2 0 )il = { 2[yli]] wheny[i] # o

o whenyfi] = ¢

It is obvious then that transpose is a specia case of stretch, with ng = » and no
diamonds.
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When a vector with diamondsis used as agrid index, asin 3.13, the diamond
standsfor “any integer coordinate” Equation 3.13 then standsfor aninfinitenumber
of equations, each of which isobtained by replacing diamondsinp & .S withinteger
numbers. By necessity then if any element of .5’ isadiamond, stretch(G, 5') hasan
infinite domain. Since the rest of the system does not deal with infinite domains,
thisis one reason why the use of grid-stretch isrestricted.

To identify precisely the stretch factor 5 outside the context of an expression
stretch(G, 5'), it is necessary to specify the input dimensionality » of G. We
refine the definition of .5’ to be the pair ([so, . .., s,,,—1], 7). For convenience we
abbreviate such pair as [so, . . ., $p.—1]n-

Certain valuesof 5 are invertible. We say that S—1 istheinverse of S if for all
P (p® S)® S~ = p. For instance, to verify that [0, o]7* = [0], consider:

[po] ©®[0,¢]1 = [po,<]
[Po,p1] ® [0]2 = [po]-

However, [0]2 isnot invertible, asit induces someloss of information. We require
that the second argument of grid-stretch beinvertible.

Because grid-stretch returns an assignable object that always shares its
storage with its grid argument, it can be used in a left-hand-side position; for
instance:

(map-grid (domain-of B)
(slambda (x y) (setf x (+ x y)))
:grids ((grid-stretch A [0 -1])
B))

The effect of this code is approximately the following:

for al p from domainOf(B)
Alp @ [0,0]1 Y = A[p® [0, ]3] + B[]

If we make the further assumption that operations for different indices p are serial-
ized (in some order), then this code accumulatesin A the elements of B aong the
O-th dimension. A should have been initialized to the identity for the operation (0
in this case).

Depending on the shape of each computation section, it can bemore convenient
to vectorize along one of the reduction dimensions, or orthogonally to it. Thus
two versions of the elementwise code are produced, and the most efficient one
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is chosen at run time on a section-by-section basis. Each version itself contains
two sub-versions, one with masking for the bitmap/thick domain case, the other
without masking. This quadruplication of code is not an issue, because in general
the elementwise code is quite short.

A grid-reduce operator is also avalable in INFIDEL (it is implemented
in terms of map-grid and grid-stretch). We include the functionality of
grid-stretch in the interface because it exposes opportunities for optimiza-
tion. Specificaly, the reduction could be combined with other constant-factor
remappingsin the same map-grid operation, making it possibleto obtainimproved
vector-register alocation. We do none of it, but someone might in the future.
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Chapter 4

INFIDEL Reference Manual

4.1 Support types

This section describes miscellaneous abstract types, constructs, and features.

411 Vectorsand points

These are simple but useful extensionsto create and manipul ate arrays.

cons-vector type &rest elements [Macro]

cons-vector returns a pointer to a vector of type type initialized with elements.
The vector is stack-allocated and no larger than needed to contain elements.

cons-point &rest coords [Macro]

cons-point returns a pointer to a vector of integers with the values given in
coords. It expands into a cons-vector with type int. The L reader has been
modified to trandate a bracket-enclosed list into a cons-point. Example: [1 2
3] isread as (cons-point 1 2 3).

4.1.2 Virtual vectors

A virtual vector is an L object identified by a symbol. This object represents
a vector, but its elements are not stored in adjacent memory locations: they are
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implemented as separate variables, typicaly to be used as loop indices. Some L
macros accept both vectors (arrays) and virtual vectors as their arguments: one of
themisthe macro aref.

aref Vi [Operator]

aref is the generic indexing operator in L. It maps directly into the C indexing
operator, producing V{i]. In addition, v can be avirtua vector. Inthiscase, if i is
not compile-time constant, an error occurs. Otherwise, aref expandsinto thei-th
component of v.

4.2 Domains

421 Genericdomain operators

domain n [Type]

L ocations containing domain values have static type (domain n), wheren isthe
number of dimensions,

domcons lower-bound upper-bound ndim [Operator]

domcons returns avalue of type (domain ndim) that represents the set of points
in a rectangle of dimensions ndim whose bounds are specified in lower-bound
and upper-bound. ndimis an integer variable, lower-bound and upper-bound are
pointersto integers.

domcons-t pointsnp ndim [Operator]

np and ndimareintegers. pointsisan array of size np * ndimrepresenting np points,
each with ndim coordinates. The j-th coordinate of point 7 is stored in points [:
* ndim + j]. domcons-t returns the domain of dimensions ndim representing
such set of points.

to-domain grid [Operator]
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grid is an integer grid, whose values should be O or 1. to-domain returns the
domainp : grid[p] = 1.

domain-union Xy [Function]
domain-intersection Xy [Function]
domain-difference Xy [Function]
domain-accrete X [Function]
domain-boundary X [Function]
domain-shift xXp [Function]
domain-contract Xp [Function]
domain-project Xp [Function]
domain-inject Xp [Function]

These are the standard operations on domains as defined in the FIDIL reference
manual. x and y are domains. p isan integer array.

domain-reduce Xp [Function]

This is the domain counterpart of the FIDIL reduce operator on grids. Given
x = domainOf (), it returns domainOf (reduce( G, £, p, vo)).

domain-init [Function]

domain-init isan initiaization procedure that must be called before any opera-
tionson domains. Itsreturn typeisvoid.

null-domain n [Operator]

null-domain returnsadescriptor for an empty domainin n dimensions.

null-domain-p X [Operator]

null-domain-p returnstrueif x isthe null domain, false otherwise.

setf-lowerbound | X [Function]
setf-upperbound U X [Function]
setf-bounds | UX [Function]
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setf-lowerbound setstheinteger array | to contain thelower bound of domain x.
| must point to an integer array with at least as many elementsasthe dimensionality
of X. setf-upperbound setsu to the upper bound of x. setf-bounds returnsin|
and u both lower and upper bounds and may be more efficient than obtaining them
separately. These functions do not return avalue.

point-in-domain pd [Function]

point-in-domain istrueif pisind, false otherwise. pisan array of integers, d
adomain.

domain-sized [Function]

domain-size returns the number of pointsin its domain argument.

4.2.2 Low-level domain operators

This section describes a lower-level part of the domain interface. Mostly, these
operators expose choices of representation for domain values. We do not recom-
mend using these operators in portable programs. We include their description
for two reasons. First, we do not have sufficient programming experience with
INFIDEL to guarantee that the high-level, generic domain interface is always ad-
equate for producing efficient code. The low-level interface gives opportunities
for experimentation. Second, these operators can be useful building blocks for a
multiprocessor port of INFIDEL.

A domain vaue isrepresented by an instance of one of several structure types.
Currently these types are defined: manhattan, thin, thick, bitmap, collage. The
domain library is meant to be extensible, and new domain types should be added
as needed.

manhattan [Structure]
thind [Structure]
thickd [Structure]
bitmapd [Structure]
collaged [Structure]

These structures implement the domain types. They have associated predicates
(manhattan-p, etc.) and symbolic namesto beusedinthetypecase and type-p
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macros. For better isolation, the names of their fields are not part of the interface.
Their constructor functions (make-manhattan, etc.), should not be used directly.

manhattan-component domain [Operator]

manhattan-component returns the manhattan component of domain. Argument
and return type are both t. It is an error if domain does not have a manhattan
component. Currently, only thin domains do not have a manhattan component.
Manhattan domains are their own manhattan component. For thick and bitmap
domains, the manhattan component is some superset of points with a manhattan
structure, which depends on how they have been created. For collage domains, the
manhattan component is the union of the bases of the tiled components.

to-manhattan X [Function]
to-bitmap X [Function]
to-thin X [Function]

These functions convert their domain argument respectively to manhattan, bitmap,
or thinform.

4.3 Grids

Gridsrepresent mappingsbetween n-dimensiona integer tuplesand valuesof some
type. Grids are optimized for implementing “large” scalar maps.

grid n eltype [Type]
Thisisthetype of an n-dimensiona grid value, with elements of type eltype.

grid-alloc domain eltype [Operator]

grid-alloc returns a grid with index set domain and element type eltype. The
grid’s data is not initialized. The effect of reading a grid’s element before it has
been written is undefined.

LIt could return a random value or cause a run-time error, depending on whether the chunk for
that element has yet been allocated or not.
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It is foreseen that in the near future this operator will take another optional
argument, containing hints on the allocation and partitioning of the grid.

grid-free grid [Operator]

grid-free releasesal memory associated with grid. Under certain circumstances,
agrid that is no longer in useis freed automatically by the garbage collector. The
use of grid-free isrecommended for large grids. Garbage collection should be
adequate for small grids.

domain-of grid [Operator]

domain-of returnsthe domain of grid.

grid-index grid point elsize [Operator]
grid-index* grid point elsize [Operator]
grid-index returns a pointer to the element of grid indexed by point. elsizeis
the size of an element of the grid, in words. Thetypereturned by grid-index is

(pointer void). Thecaller should cast the return value into the desired pointer
type. This pointer can then be used for reading or setting the element’s value.

grid-index* is the same as grid-index, but it should be used when the
pointer is used only for reading the element.

If the element is undefined, the returned pointer value is undefined, and the
effect of reading or writing through this pointer is al so undefined.

If point is outside the grid’s domain, an error is signalled.

4.3.1 Remapping operations

grid-copy grid [Function]
Return a copy of grid.

grid-shift grid factor [Function]
grid-project grid factor [Function]
grid-inject grid factor [Function]
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grid-transpose grid factor [Function]
grid-restrict grid domain [Function]
grid-merge gX gy [Function]

The FIDIL map operators shift, project, inject, transpose, on, and disjoint union.
factor isan array of integers.

4.3.2 Elementwise operations

grid-reduce gopival [Operator]

grid-reduce istheequivalent of the FIDIL reduce operator when the type of the
result isagrid element. g isthe grid to reduce, op the binary operator used in the
reduction, and ival an initial value for the result: typically the null value for the
operator.

set-grid-reduce result gopival nfactor [Operator]

set-grid-reduce computes in result the reduction of grid g by the binary op-
erator op, with initial value ival, and aong the n dimensions specified by factor.
result must be a previously allocated grid with the correct domain (obtai nable by
domain-reduce).

map-grid domain op &key gridsothers [Operator]
map-grid* domainindex op &key gridsothers [Operator]

map-grid and map-grid* execute an operation in a data-parallel fashion over
the domain D equa to the intersection of domain and the domains of the grid
arguments. op specifies the operation to be applied to the grids’ elements at each
point. index isavirtua vector, available within op, that at execution timeis bound
to each point of D. gridsisalist of grid specifiers, and others alist of non-local
variable specifiers.

The gridsargument

A grid specifier has the form (grid-expression &key free partition). Grid-
expression is either a variable, or an expression containing only constant-factor
remappings: thatis, any combinationof grid-shift,grid-inject,grid-project,
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grid-transpose, and grid-stretch withacompile-timeknownfactor (thesec-
ond argument).

The keyword arguments are called grid directives. They provide information
that may help optimize the operation.

The free directive is used to indicate that the data of the grid is dead after
the operation, and the memory allocator can reclaim the data area. Thisis done
transparently. After the completion of map-grid, a grid with the value t for its
free directive behaves just asif it had just been alocated.

The partition directive provides a way to specify the partition of a grid, when
the partition is known at compile time (an aternative way is through the use of a
partia value: see theimplementation note below). If the partitions of al grids are
provided, map-grid can perform severa optimizations.

The othersargument

The others argument is alist of variables used by the operator op, other than the
variablesinitslambdalist. The necessity for other isdueto a deficiency of L: the
lack of closures. During expansion of map-grid, the code generated by applying
op tothegrid dementsis placed in aseparate L function called alooper. Variables
in op that are lexicaly visible where the map-grid statement appears, may no
longer be so after the code is moved to thelooper. Such variables must be included
in the other list or map-grid will generate incorrect code.

Examples

This section presents examples of the use of map-grid.

(map-grid (domain-of a)
(slambda (x) (setf x 0))
:grids ((a)))

The above code setsto O all elements of the integer grid a.

(map-grid (domain-intersection (domain-of b)
(domain-of c¢))
(slambda (x y z) (setf x (+ y z)))
:grids ((a)
(v)
()



The above code adds the elements of b and ¢ on the intersection of their domains,
and storestheresult in a.

(map-grid d
incf
:grids (((grid-stretch a [-1 0 1]))
()

The above code is usable only internally for execution on a uniprocessor. a isa
2-dimensional grid, and b a 3-dimensional one. “Rows’ of b on d along the 1st
dimension (index 0) areadded into a. More specificaly, if ¢, j, k arethe coordinates
of thepoint P asit spans d, the operation performed is: al[j, k1 += bl7, 5, k].

I mplementation note

map-grid makes use of the compile-time capabilities of L. In the genera case,
map-grid expands into code that cals library functions, and those call back the
looper function. Under certain conditions, map-grid expands into a simplified
inlined code. The conditions are:

1. domain isacompile-time constant;
2. al grids expand into partia values with a known domain;
3. the computation partition has a small number of sections.

Thisis likely to be useful for operations on small or medium-sized grids with a
simple domain, when the domain is known at compiletime.

4.4 Caveats

Not all the described types and operators are availablein the current system, mostly
because we don’t have yet any applications that use them. At the time this report
iswritten, the following applies:

¢ al types and operations related to thin and thick domains are not imple-
mented; only manhattan, collage, and bitmap domains are available;

¢ the grid alocator does not accept hints and aways partitions the domain
automatically;
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¢ vector operations are not optimized dynamically; however, the layout for a
grid section islongest-major, that is, the stride along the longest dimension
is1. Thisisagood choicein most cases.

¢ themap-grid operation does not fold into inline code when &l descriptors
have known values. It used to doitin an older version. | believe thereisno
major obstacleto fixing it back.
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Appendix A

Facts of modular arithmetics

A diophantine equation of the form
(az +b)ymode =0 (A.D)

where a, b, and ¢ are integer, and we are interested in integer solutions, is aways
solvable if ¢ and ¢ are mutually prime, that is gcd(a, ¢) = 1. The solutions can
be obtained by computing® the modular inverse of a with respect to ¢, which we
denote (a) 2 defi ned by:

(mod ¢

[(a)(_niod 0 c] mod ¢ = 1.
The solutions have the form

@ = <b(a)t —|—kc for all integer k.

(mod ¢

If @ and ¢ are not mutually prime, let d = ged(a,¢) > 1. If b mod d = 0, we can
rewrite equation A.1 as.

a b c
and solveit as described. If b mod d # O, there are no solutions.
A system of equations of the form:

(A.2)

(z4+b)modc=0
(z+b)mode =0

In our application, a brute-force search of all integers between 1 and « mod ¢ is adequate.
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is solved by finding the intersection of the set of solutions of each equation. We
know that

x = b+ ke
{ T = <:>b/_|_klcl (A3)
We derive
s kesb+ 0

C/

and, because £’ must be integer,
(ke<b+0')modc =0

which isjust equation A.1. Given d = gcd(c¢, ¢'), if (b<b') mod d # 0, then the
system has no solutions; otherwise,

bt (c)_l c ,
k= - + A— for dl integer A
d d (mod c) d =

and substituting & in thefirst equation of A.3 we obtain

beb e\t ce
r=xb+c (—) + A —
d d (mod c) d

which is the same as saying
(z 4 a)mod s =0

with

b@b’(c)_l
a = boc —
d d (mod ¢)
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Appendix B

FIDIL Domain and map
operators

Tables B.1 and B.2 give the standard operators and functions on domains. Ta
bles B.3-B.6 give the standard operators and functions on maps.
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Expression

Meaning

nullDomain(n)

The empty domain of type domain[~]. The quantity n
must be a compile-timeinteger constant.

D1+ D> Union of D1 and D».

Dq* Dy Intersection of D1 and D».

D1 Do Set difference of D4 and D».

pinD where D isadomain of arity » and p isan array of type
valtype(D): alogica expressionthat istrueiff pisa
member of D.

Iwb(D) For adomain of arity n: Aninteger map with domain

upb(D) [1..n] (for n = 1, an integer) whose k%" component is
the minimum (Iwb) or maximum (upb) value of of the
k™ component of the elements of D.

arity(D) yields n for adomain of arity .

sizeOf(D) The cardindity of D.

shift(D, 5), D <<.5 | Where S isof typevaltype(D) and n isthe arity of D:
Thedomain{d + S|din D}.

shift(D) Same as shift(D, -lwb(D)).

inject(D, 5) Thedomain {d«5|din D}.

project(D, ) The domain {d @ S|d in D}, where ‘®)’ denotes ele-
mentwise integer division, rounding toward <oc.

expand(D, 5) Thedomain{e|le ® S in D}.

contract(F, 5)

Table B.1:

Thedomain D suchthat £ = expand( D, 5),if itexists.

Operators and functions on domains, part 1.
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Expression | M eaning

accrete(D) The set of points that are within a distance 1 in al
coordinates from some point of D.
boundary(D) | accrete(D) < D.

reduce(D, 5) | thedomain R suchthat if D = domainOf (') for some
map G, then R = domainOf(reduce(G, f, 9, vg)) for
any f, vo.

Table B.2: Operators and functions on domains, part 2.
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Expression |

Meaning

domainOf(X) | The domain of map X. This may aso appear in a left-hand
side context if X is a partial map variable. The result of an
assignment to the domain of X is a map whose initial image
consists of undefined values.
toDomain(X) | where X isalogical map:
{p € domainOf( X )| X [p]}.
image(.X) where X is a map whose codomain is an integer map of arity
n: the domain of dimension n whose elementsare all elements
intheimage of X —that is, the set {d| X [p] = d, for some p}.
upb(X) upb(domainOf (X))
Iwb(X) Iwb(domainOf (X))
arity(X) arity(domainOf (X))
X#Y Thecompositionof X andY . X andY aremaps; Y’scodomain
must be valtype(domain0f (X )); and image (Y) must be a
subset of domain0f (X).
X # Y is amap object (which is assignable if X is
assignable) such that
(X#Y)[p] = XY ]l
Hence, itsdomainis domain0f (Y).
shift(X, 5), where S'isa[l..n] integer (aninteger for n = 1), with default
X< S value-lwb(X), and n isthe arity of X: themap
shift(X) X # [p from domainOf(X): p-57.
inject(.X, .5) X # [p from inject(domain0f(X), 5): p/5].
project(X,S5) | X # [p from project(domain0f(X), S5): Sx*pl.
contract(X, 5) | [p in expand([0..0, ..., 0..0], S) :
[project(X << -p, S)1].
expand(X,.S) | Produces amap defined by therelation
expand(contract(X,5),5) = X.

Table B.3: Operators and functions on maps, part 1.
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Expression

Meaning

XonD

Themap X restricted to domain D.

XMHY

where domainOf(.X ) N domainOf(Y') = {}: the union
of the graphs of X and Y, whose codomains must be
identical and whose domains must be of identical arity.

concat(F,. .

A ER)

Concatenation of £, ..., E>. The I; must be 1-dimen-
siona maps with contiguous domains and some (com-
mon) codomain 7, or values of typeT", which are treated
as one-element maps with lower bound 0. At least one
of the F; must be amap on T'. The result has the same
lower bound as F1 and an upper bound equal to the sum
of thelengths of the F;.

Fe

F <>

Assuming that F' takes arguments of type T; and returns
a result of type 7', F@ is a function extending F’ to
arguments of type [D;] T;, where the D; are domains of
the same arity, and returns aresult of type [ D] T', where
D isthe intersection of the D;. The result of applying
this function is the result of applying F' pointwise to
the elements corresponding to the intersection of the
argument domains.

For F' asabovereturning typeT7: Theextension of F' to
arguments of types[D;|T as above, returning a value of
type [ D171 defined by

F< @>($1,...,$n)
= F@(z1,...,2,) (+) (z10n (D1 <D)).

Table B.4: Operators and functions on maps, part 2.



Expression

Meaning

compress(X)

compress( X, W)

decompress( X, W)

where X is a map on a domain of arity 1: The one-
dimensiona map, X’ with a contiguous domain having
alower bound of 1 such that X'[:] isthe value of X [p;],
for p; the i*" smallest element in the domain of X.

where W is a one-dimensional map whose codomain is
logical: compress(X on toDomain(W)).

The map X’ such that
compress(X’, W) = compress(X).

reduce(Xv f7 S? UO)

reduce(Xv f7 UO)

where X isarectangular map of arity » and codomain
C; 8 =lig,...,i,[,1<ig<...<i, <n;and fisa
function taking two arguments, one of sometype R, the
second of type (', yielding aresult of type R. Theresult,
B,isof typeT = [#(n<r)|R,or T = Rifn = r, and
is defined as follows.

Blj1, .- Jin=15 Jirt1s - -

=f(f(--- f(vo,v1), ), v). Wherethev; arethe
elements

X[, - Jirm1 ks Jigg1s -+ ]
for dl %k for which the expression is defined, taken in
some undefined order.
where X isany map with codomain C'; vg is of some
type R; and f isasabove. Theresultisof type R and has
the value vg if the domain of X isempty, and otherwise

SO (00, v1)s -+ 2), Uy
wherethe v;, i > 0 are the elements of X issomeunde-
fined order.

Table B.5: Operators and functions on maps, part 3.
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Expression

Meaning

sort(X, P)

where X isacontiguous, one-dimensional map with co-
domain 7" and P islogical-valued binary function with
arguments of typeT': themap X’ with the same domain
as X that results from permuting the image of X so that
i < jimplies P(X'[3], X'[4]). The permutation is strict:
the order of image elements = and y such that P(z,y)
and P(y, ) isunchanged by the sort.

trace(A4, 5)

reduce(A,proc +, 5, 0)

outerproduct(A, B)

where A and B are maps with rectangular domains of
dimensions n, and n;, and the same codomains. The
map C' defined as follows.
Clity ooyl J1s o o Jny) =
Ality oy i ¥ B, -« - Jny)

transpose(X [, 7])

flip(x, 7)

flip(x)

where 7 = [71,...,7,] is a permutation of the inte-
gers between 1 and n, and » is the arity of the map X:
The object, X', resulting from transposing the indices
of X according to =. Specificaly, X'[ir,,...,i,] =
X[i1,...,1,). Thedefault for = is[2,1].
where X isof type[D4] . ..[D,] T: Themap, X' defined
by the following.

X'[pry] - ] = X[pa] - pa).
The default for 7 is[2,1].
where X is a record of maps with identical domains:
produces the map taking p in the common domain to the
record with field values F;[p], where the F; are thefields
of X. X can also beamap of records, in which caseflip
performs the inverse operation.

remap(X)

remap(Y, m)

The object resulting from “reassociating” the indices of
X, which must be of type [*m][*n]T to form an
isomorphic object, Y of type [*m + »]1T. If pisa
valid index of X and ¢ isavadid index of X [p], then
Y [concat(p,q)] = X [pllql.

If X,Y,andm areasabove, then remap (Y, m)=X.

Table B.6: Operators and functions on maps, part 4.
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| ndex

*, 51

+, 51

- 51

<@>, 54

@,54

#, 53

aref, 38

bitmapd, 40
collaged, 40
cons-point, 37
cons-vector, 37
domain-accrete, 39
domain-boundary, 39
domain-contract, 39
domain-difference, 39
domain-init, 39
domain-inject, 39
domain-intersection, 39
domain-of, 42
domain-project, 39
domain-reduce, 39
domain-shift, 39
domain-size, 40
domain-union, 39
domain, 38
domcons-t, 38
domcons, 38
grid-alloc, 41
grid-copy, 42
grid-free, 42
grid-indexx, 42
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grid-index, 42
grid-inject, 42
grid-merge, 43
grid-project, 42
grid-reduce, 43
grid-restrict, 43
grid-shift, 42
grid-transpose, 43
grid, 41
manhattan-component, 41
manhattan, 40
map-gridx, 43
map-grid, 43
null-domain-p, 39
null-domain, 39
point-in-domain, 40
set-grid-reduce, 43
setf-bounds, 39
setf-lowerbound, 39
setf-upperbound, 39
thickd, 40

thind, 40
to-bitmap, 41
to-domain, 38
to-manhattan, 41
to-thin, 41

accrete, 52
arity function, 51, 53

boundary, 52



compress, 55
concat, 54
contract, 51, 53

decompress, 55
domainOf, 53

expand, 51, 53
flip, 56

image, 53
in operator, 51
inject, 51, 53

Iwb, 51, 53
nullDomain function, 51

on keyword, 54
on operator, 54
outerproduct, 56

project, 51, 53

reduce, 52, 55
remap, 56

shift, 51, 53
sizeOf function, 51
sort, 56

toDomain, 53
trace, 56
transpose, 56

upb, 51, 53
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